Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evol Dev ; 24(5): 131-144, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35924750

RESUMO

Evolution in response to a change in ecology often coincides with various morphological, physiological, and behavioral traits. For most organisms little is known about the genetic and functional relationship between evolutionarily derived traits, representing a critical gap in our understanding of adaptation. The Mexican tetra, Astyanax mexicanus, consists of largely independent populations of fish that inhabit at least 30 caves in Northeast Mexico, and a surface fish population, that inhabit the rivers of Mexico and Southern Texas. The recent application of molecular genetic approaches combined with behavioral phenotyping have established A. mexicanus as a model for studying the evolution of complex traits. Cave populations of A. mexicanus are interfertile with surface populations and have evolved numerous traits including eye degeneration, insomnia, albinism, and enhanced mechanosensory function. The interfertility of different populations from the same species provides a unique opportunity to define the genetic relationship between evolved traits and assess the co-evolution of behavioral and morphological traits with one another. To define the relationships between morphological and behavioral traits, we developed a pipeline to test individual fish for multiple traits. This pipeline confirmed differences in locomotor activity, prey capture, and startle reflex between surface and cavefish populations. To measure the relationship between traits, individual F2 hybrid fish were characterized for locomotor behavior, prey-capture behavior, startle reflex, and morphological attributes. Analysis revealed an association between body length and slower escape reflex, suggesting a trade-off between increased size and predator avoidance in cavefish. Overall, there were few associations between individual behavioral traits, or behavioral and morphological traits, suggesting independent genetic changes underlie the evolution of the measured behavioral and morphological traits. Taken together, this approach provides a novel system to identify genetic underpinnings of naturally occurring variation in morphological and behavioral traits.


Assuntos
Evolução Biológica , Characidae , Adaptação Fisiológica , Animais , Characidae/genética , México , Fenótipo
2.
Curr Biol ; 31(16): 3694-3701.e4, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34293332

RESUMO

Adaptation to novel environments often involves the evolution of multiple morphological, physiological, and behavioral traits. One striking example of multi-trait evolution is the suite of traits that has evolved repeatedly in cave animals, including regression of eyes, loss of pigmentation, and enhancement of non-visual sensory systems.1,2 The Mexican tetra, Astyanax mexicanus, consists of fish that inhabit at least 30 caves in Mexico and ancestral-like surface fish that inhabit the rivers of Mexico and southern Texas.3 Cave A. mexicanus are interfertile with surface fish and have evolved a number of traits, including reduced pigmentation, eye loss, and alterations to behavior.4-6 To define relationships between different cave-evolved traits, we phenotyped 208 surface-cave F2 hybrid fish for numerous morphological and behavioral traits. We found differences in sleep between pigmented and albino hybrid fish, raising the possibility that these traits share a genetic basis. In cavefish and other species, mutations in oculocutaneous albinism 2 (oca2) cause albinism.7-12 Surface fish with mutations in oca2 displayed both albinism and reduced sleep. Further, this mutation in oca2 fails to complement sleep loss when surface fish harboring this engineered mutation are crossed to independently evolved populations of albino cavefish with naturally occurring mutations in oca2. Analysis of the oca2 locus in wild-caught cave and surface fish suggests that oca2 is under positive selection in 3 cave populations. Taken together, these findings identify oca2 as a novel regulator of sleep and suggest that a pleiotropic function of oca2 underlies the adaptive evolution of albinism and sleep loss.


Assuntos
Albinismo , Characidae , Proteínas de Peixes/genética , Sono , Animais , Evolução Biológica , Characidae/genética , Olho , Pigmentação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA